# PHOTOELECTRIC ROTARY ENCODER 

Photoelectric rotary encoder A36 is used to establish an informational link between the key machine components, industrial robots, comparators and DCC, NC or Digital Readout Units. It provides information about the value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.

Three versions of output signals are available:

- A36-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App} ;$

MECHANIGAL DATA

| Line number on disc (z) | $\begin{aligned} & 100 ; 200 ; 250 ; 360 ; \\ & 500 ; 1000 ; 1024 ; \\ & 1500 ; 2000 ; 2500 ; \\ & 3600 \end{aligned}$ |
| :---: | :---: |
| Number of output pulses per revolution | $\begin{aligned} & \text { Z x k , where } \\ & k=1,2,3,4,5,8,10 \end{aligned}$ |
| Maximum shaft speed | 10000 rpm |
| Maximum shaft load: <br> - axial <br> - radial (at shaft end) | $\begin{aligned} & 5 \mathrm{~N} \\ & 10 \mathrm{~N} \end{aligned}$ |
| Accuracy ( $\mathrm{T}_{1}$-period of lines on disc in arc. sec) | $\pm 0.1 \mathrm{~T}_{1}$ arc. sec |
| Starting torque at $20^{\circ} \mathrm{C}$ | $\leq 0.002 \mathrm{Nm}$ |



- A36-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A36-F - square-wave signals TTL or HTL.

| Rotor moment of inertia | $<2 \mathrm{gcm}^{2}$ |
| :--- | :--- |
| Protection (IEC 529) <br> - for axial cable outlet <br> - for axial cable outlet through gland and <br> for radial cable outlet | IP54 |
| Maximum weight without cable | 0.07 kg |
| Operating temperature | $-10 \ldots+70^{\circ} \mathrm{C}$ |
| Storage temperature | $-30 \ldots+80^{\circ} \mathrm{C}$ |
| Maximum humidity (non-condensing) | $98 \%$ |
| Permissible vibration (55 to 2000 Hz ) | $\leq 100 \mathrm{~m} / \mathrm{s}^{2}$ |
| Permissible shock (11 ms) | $\leq 300 \mathrm{~m} / \mathrm{s}^{2}$ |



C
For IP54 (standard)



C
For IP64 (on option)


## ELECTRICAL DATA

| VERSION | $\mathrm{A} 36-\mathrm{A} \sim 11 \mu \mathrm{App}$ | A36-AV $\sim 1 \mu \mathrm{App}$ | A36-F П- TTL; Пل HTL |
| :---: | :---: | :---: | :---: |
| Supply voltage | $+5 \mathrm{~V} \pm 5 \%$ | $+5 \mathrm{~V} \pm 5 \%$ | $+5 \mathrm{~V} \pm 5 \%$; (10 to 30) V |
| Max. supply current (without load) | 80 mA | 120 mA | 120 mA |
| Light source | LED | LED | LED |
| Incremental signals | Two sinusoidal I , and $\mathrm{I}_{2}$ Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$ | Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at $120 \Omega$ load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$ | Differential square-wave $\mathrm{U} 1 / \overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. <br> Signal levels at 20 mA load current: <br> - low (logic "0") $\leq 0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ <br> - low (logic "0") $\leq 1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V <br> - high (logic "1") $\geq 2.4 \mathrm{~V}$ at $U_{P}=+5 \mathrm{~V}$ <br> - high (logic "1") $\geq\left(\cup_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V |
| Reference signal | One quasi-triangular $I_{0}$ peak per revolution. Signal magnitude at 1 kW load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component) | One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120 W load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component) | One differential square-wave UO/UO per revolution. Signal levels at 20 mA load current: <br> - low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ <br> - low (logic "0") $<1.5 \mathrm{~V}$ at $U_{p}=10$ to 30 V <br> - high (logic " 1 ") $>2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ <br> - high (logic "1") $>\left(U_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V |
| Maximum operating frequency | $(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$ | $(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$ | $(160 \times k) \mathrm{kHz}$, k-interpolation factor |
| Direction of signals | $I_{2}$ lags I for clockwise rotation (viewed from shaft side) | +B lags +A for clockwise rotation (viewed from shaft side) | U2 lags U1 with clockwise rotation (viewed from shaft side) |
| Maximum rise and fall time | - | - | $<0.5 \mu$ s |
| Standard cable length | 1 m , without connector | 1 m , without connector | 1 m , without connector |
| Maximum cable length | 5 m | 25 m | 25 m |
| Output signals |  |  |  |

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than 0.5 mm 2

ACCESSORIES

| CONNECTORS FOR CABLE | B12 <br> 12-pin round connector | C9 12-pin round connector | C12 <br> 12-pin round connector | D9 <br> 9-pin flat connector | D15 15-pin flat connector | RS10 10-pin round connector | ONC 10-pin round connector |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIGITAL READOUT DEVICES | CS3000 |  |  |  | CS5500 |  |  |
| COUPLING | SC30 |  |  |  |  |  |  |
| EXTERNAL INTERPOLATOR | NK |  |  |  |  |  |  |

## ORDER FORM



