ABsH1 PHOTOELECTRIC ROTARY ENCODER

- A58H1-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A58H1-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $\times 1, \times 2$, x3, x4, x5, x8, x10.

Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	IP64
Protection (shaft side) (IEC 529)	IP64
Maximum weight without cable	0.3 kg
Operating temperature	$-10 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

$2 \times \mathrm{M} 3 \times 90^{\circ}$ Shaft backing screws

2xM3×90 $2 \times \mathrm{M} 3 \times 90^{\circ}$

$\mathbf{D}, \mathbf{m m}$	$\varnothing 6$	$\varnothing 8$	$\varnothing 10$	$\varnothing 12$	$\varnothing 14^{\star}$ (on option)

*For one side fixation from encoder flange side

ELECTRICAL DATA

VERSION	A58H1-A $\sim 11 \mu \mathrm{App}$	A58H1-AV $\sim 1 \mathrm{Vpp}$	A58H1-F ${ }^{\text {I TTL; Пل HTL }}$
Supply voltage (U_{P})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; +(10 to 30) V
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source Incremental signals	LED Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	LED Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	LED Differential square-wave $\cup 1 / \overline{\mathrm{U1}}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic "O") $\leq 1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V - high (logic "1") $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{P}}=+5 \mathrm{~V}$ - high (logic "1") $\geq\left(U_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
Reference signal	One quasi-triangular I_{0} peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load $-R=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/UO per revoIution. Signal levels at 20 mA load current: - low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic "O") $<1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}^{\mathrm{p}}=10$ to 30 V - high (logic " 1 ") $>2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}^{\mathrm{P}}=+5 \mathrm{~V}$ - high (logic "1") $>\left(\cup_{\mathrm{P}}-2\right) \vee$ at $\mathrm{U}_{\mathrm{p}}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times \mathrm{k}) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I, lags I, for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

Note:

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanica rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING REQUIREMENTS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 12-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES	CS3000			CS5500			
EXTERNAL INTERPOLATOR	NK						

ORDER FORM

A58H - XX	$X X X X-X X-X X X-X X X-$				
OUTPUT SIGNAL VERSION:	PULSE NUMBER PER REVOLUTION:	SHAFT HOLE DIAMETER:	SUPPLY VOLTAGE:	CABLE LENGTH:	CONNECTOR TYPE:
$\begin{aligned} & A \\ & \text { AV } \\ & \text { F } \end{aligned}$	$\begin{aligned} & 100 \\ & 108000 \end{aligned}$	$6,8,10,12,14^{\star} \mathrm{mm}$ *with additional hub for shaft mounting, for one side fixation from flange side	$\begin{aligned} & 05 \mathrm{~V}-+5 \mathrm{~V} \\ & 30 \mathrm{~V}-+(10 \text { to } 30) \mathrm{V}^{*} \end{aligned}$ *only for A58H-F with HTL output	$\begin{aligned} & \text { ARO1 }-1 \mathrm{~m} \\ & \text { ARO2 }-2 \mathrm{~m} \\ & \text { ARO3 - } 3 \mathrm{~m} \end{aligned}$	W - without connector B12 - round, 12 pins C9-round, 9 pins C12 - round, 12 pins D9 - flat, 9 pins D15-flat, 15 pins RS10 - round, 10 pins ONC - round, 10 pis ONC - round, 10 pins
ORDER EXAMPLES:		1) A58H1-AV-1024-6-05V-ARO1/W 2) A58H1-F-4000-8-30V-ARO6/C12 3) A58H1-F-4000/500-8-30V-AR06/C12			

